

Protegendo conexões WebSocket: risco, análise e medidas práticas - Against Invaders - Notícias de CyberSecurity para humanos.

Data: 2025-10-06 10:33:26

Autor: Inteligência Against Invaders

Diego Bentivoglio:6 Outubro 2025 12:31

Os WebSockets oferecem comunicação bidirecional persistente entre cliente e servidor, essencial
para aplicativos em tempo real, como bate-papo, jogos, painéis e notificações. No entanto, essa
persistência introduz superfícies de ataque específicas: se o canal ou suas regras não estiverem
adequadamente protegidos, poderá ocorrer exfiltração de dados, sequestro de sessão e
vulnerabilidades relacionadas à entrada não filtrada. Este artigo fornece uma explicação prática dos
riscos mais significativos e contramedidas essenciais para proteger esse tipo de conexão.

Mas o que torna o WebSockets arriscado?

Seus recursos úteis incluem conexões longas, tráfego bidirecional e latência extremamente baixa,
que criam simultaneamente oportunidades para invasores. Uma conexão persistente significa que
uma única violação pode manter o acesso por um longo tempo. Bidirecionalidade significa que o
cliente e o servidor podem enviar dados, o que significa que ambos os lados devem tratar as
mensagens como não confiáveis. Os endpoints dinâmicos, se construídos com dados controlados
pelo usuário, podem induzir o cliente a se conectar a servidores mal-intencionados. Finalmente, a
falta de controle de aperto de mão integrado abre a porta para possíveis injeções ou explorações de
sites externos.

Os tipos mais significativos de ataques incluem interceptação e modificação de tráfego, ou seja,
ataques de sniffing ou man-in-the-middle, quando o protocolo “ws://” não criptografado é usado.
Depois, há a injeção de conexão, comparável ao CSRF aplicado ao WebSockets, onde páginas
maliciosas enganam o navegador para estabelecer conexões. Igualmente importante é a exfiltração
de dados por meio de redirecionamentos ou mensagens enviadas para servidores controlados por
um invasor. Por fim, vulnerabilidades relacionadas a entradas não validadas, capazes de gerar XSS,
injeção de SQL ou comandos inesperados.

Diretrizes essenciais para proteger conexões WebSocket

Os princípios fundamentais de defesa são claros. A criptografia deve ser sempre obrigatória e o
protocolo “wss://”, ou seja, WebSocket sobre TLS, deve ser usado para evitar sniffing e ataques
man-in-the-middle. Os endpoints devem ser estáveis e incontroláveis pelo usuário, definidos por
configurações seguras e nunca encadeados a entradas externas. Os handshakes devem ser
autenticados e verificados por meio de mecanismos como tokens assinados ou desafio-resposta,
com o servidor verificando o estado da sessão antes de aceitar a conexão. A verificação de origem
do lado do servidor, verificando o cabeçalho “Origem” em uma lista de permissões, é um requisito
adicional.

 1 / 3

https://www.redhotcyber.com/post/author/diego-bentivoglio/

Todas as mensagens devem ser tratadas como não confiáveis, com validação rigorosa por meio de
padrões, limites de tamanho e limpeza constante, aplicando o princípio de “negar por padrão”. É
uma prática recomendada limitar privilégios e recursos, expondo apenas o estritamente necessário e
separando canais e permissões para reduzir o impacto de um comprometimento. Mecanismos de
limitação de taxa, limites de tamanho de mensagem e tempos limite de inatividade também são
necessários, além de exigir reconexões periódicas para renovar credenciais. Por fim, o registro em
log e o monitoramento ativo permitem registrar eventos como handshakes rejeitados, tokens
expirados ou anomalias de tráfego, com alertas para padrões suspeitos, como picos de conexões do
mesmo IP.

Práticas recomendadas e detecção de ameaças para proteger
WebSockets

Os padrões de defesa recomendados são baseados em exemplos conceituais. A autenticação no
handshake requer que um token assinado seja verificado no lado do servidor antes de estabelecer o
canal. A lista de permissões de origem permite que solicitações não originadas de domínios
autorizados sejam rejeitadas. A validação de carga com padrões formais permite que mensagens
não compatíveis sejam rejeitadas. Escapar o conteúdo a ser exibido na interface do usuário é
essencial para evitar XSS. A segmentação de canais garante a separação do tráfego sensível e não
sensível, reduzindo o impacto de um comprometimento.

Os indicadores de um possível comprometimento incluem um aumento anormal nas conexões de
fontes inesperadas, a presença de mensagens com URLs externas ou cargas incomuns, conexões
repetidas e rápidas com diferentes endpoints do mesmo cliente e logs que destacam o vazamento
de dados confidenciais fora dos fluxos normais do aplicativo.

Em conclusão, os WebSockets permitem experiências poderosas em tempo real, mas exigem regras
claras para permanecerem seguros. Com práticas como criptografia, autenticação de canal,
validação de mensagens, verificação de origem e monitoramento ativo, o alto desempenho pode ser
mantido e reduz drasticamente o risco de abuso e perda de dados. A aplicação sistemática desses
princípios transforma um canal potencialmente perigoso em uma ferramenta mais confiável e segura.

Diego BentIvoglio
Apaixonado por hacking e segurança cibernética, especialista em testes de penetração, já trabalhei
com empresas como Leonardo CAE AJT. Arquiteto de soluções da AWS e entre os 100 maiores
hackers BMW 2024 no HackerOne, combino habilidades em infraestrutura e aplicativos da web com
uma forte paixão por segurança.

Lista degli articoli

 2 / 3

https://www.redhotcyber.com/post/author/diego-bentivoglio/

Powered by TCPDF (www.tcpdf.org)

 3 / 3

http://www.tcpdf.org

