Delivery of €13 million in submarine cables for the Shanhaiguan offshore g

Data: 2025-09-28 10:08:08

Autor: Inteligéncia Against Invaders

document.addEventListener(‘'DOMContentLoaded’, function() {
const buttons = document.querySelectorAll(*.wpcode-tts-button’);
if (lbuttons.length || !(‘speechSynthesis’ in window)) return;

const ajaxUrl = *https://www.redhotcyber.com/wp-admin/admin-ajax.php’;
function recordAudioView(postld) {

fetch(ajaxUrl, {
method: ‘POST’,

headers: {

‘Content-Type’: ‘application/x-www-form-urlencoded’

2

body: ‘action=wpcode_tts_view&post_id="+ encodeURIComponent(postid)
)

.then(response => response.json())

then(data => {

if ('data.success) {

console.error(‘Errore logico AJAX:’, data.data);

}

)

.catch(error => console.error(‘Errore di rete AJAX:’, error));
}

let voices =[];

let voicesLoaded = false;

function loadVoices() {

voices = speechSynthesis.getVoices();
if (voices.length > 0) {

voicesLoaded = true;

}

}

/l Tentativo di caricamento iniziale
loadVoices();

/I Assicurati che le voci vengano ricaricate quando I'elenco cambia (evento cruciale)
if (speechSynthesis.onvoiceschanged == undefined) {
speechSynthesis.onvoiceschanged = loadVoices;

}

/**

* Funzione principale per avviare la sintesi vocale, con logica di retry.
* @param {HTMLEIlement} button L’elemento del pulsante.

* @param {number} attempt Contatore dei tentativi (max 2).

*/

function startSpeaking(button, attempt = 1) {

const text = button.getAttribute(‘data-article’);

const lang = button.getAttribute(‘data-lang’) || ‘it-1T’;

const pref = button.getAttribute(‘data-voice-pref’) || ”;

const rate = parseFloat(button.getAttribute(‘data-rate’)) || 1;

const pitch = parseFloat(button.getAttribute(‘data-pitch’)) || 1;

if ('text) { console.error(‘Testo mancante o vuoto.’); return; }

/[*** LOGICA DI RETRY PER IL CARICAMENTO DELLE VOCI ***
if ('voicesLoaded && attempt ===1) {

loadVoices(); // Riprova a caricare

if ('voicesLoaded) {

console.warn(“Voci non caricate al 1° tentativo. Riprovo in 500ms.”);
button.textContent = “? Caricamento vocale... (Riprovo)”;

I/l Riprova dopo 500ms

setTimeout(() => startSpeaking(button, 2), 500);
return;

}

} else if ('voicesLoaded && attempt === 2) {
console.error(“Voci non caricate al 2° tentativo. L'API TTS non é disponibile.”);
button.textContent = “? API vocale non disponibile ?7;
setTimeout(() => {

if (button.getAttribute(‘data-speaking’) == ‘true’) {
button.textContent="? Ascolta l'articolo”;

}

}, 3000);

return;

}
Il *** FINE LOGICA DI RETRY ***

/I Cancella eventuali letture precedenti e setta lo stato
speechSynthesis.cancel();
document.querySelectorAll(‘.wpcode-tts-button’).forEach(b => {
if (b == button) {

b.setAttribute(‘data-speaking’, ‘false’);

b.textContent = “? Ascolta l'articolo”;

}
h;

const utter = new SpeechSynthesisUtterance(text);
utter.lang = lang;

utter.rate = rate;
utter.pitch = pitch;

/I Selezione voce migliorata

let selectedVoice = null;

if (voices.length) {

const italianVoices = voices.filter(v => v.lang.startsWith(“it"));

// Priorita 1: Voci di alta qualita

if (pref === ‘female’) {

selectedVoice = italianVoices.find(v => v.name.includes(*Google”) && /(it-1T|Italian)/i.test(v.lang) &&
/(female|femminalalessia|lucialcarla)/i.test(v.name)) ||

italianVoices.find(v => v.name.includes(“Microsoft”) && /(female|femmina)/i.test(v.name));

} else if (pref === ‘male’) {

selectedVoice = italianVoices.find(v => v.name.includes(*Google”) && /(it-1T|Italian)/i.test(v.lang) &&
/(male|maschio|luca|paolo)/i.test(v.name)) ||

italianVoices.find(v => v.name.includes(“Microsoft”) && /(male|maschio)/i.test(v.name));

}

/l Priorita 2 & 3: Fallback

if (!selectedVoice) {

if (pref === ‘female’) selectedVoice = italianVoices.find(v =>
/(female|femminalalessia|lucialcarla)/i.test(v.name));

else if (pref === ‘male’) selectedVoice = italianVoices.find(v =>
/(male|maschio|luca|paolo|giorgio)/i.test(v.name));

}

if (!selectedVoice && italianVoices.length) selectedVoice = italianVoices[0];

}

if (selectedVoice) utter.voice = selectedVoice;

/ Handlers

utter.onstart = function(){ button.setAttribute(‘data-speaking’,'true’); button.textContent="?? Ferma
la lettura”; };

utter.onend = function(){ button.setAttribute(‘data-speaking’, false’); button.textContent="? Ascolta
I'articolo”; };

utter.onerror = function(e){

console.error(‘TTS error — Codice:’, e.error, ‘dettaglio:’, e);
button.setAttribute(‘data-speaking’, false’);

/[button.textContent="? Errore di lettura ?”;

setTimeout(() => {

if (button.getAttribute(‘data-speaking’) !== ‘true’) {

button.textContent="? Ascolta I'articolo”;

}

}, 3000);

3

speechSynthesis.speak(utter);
button.setAttribute(‘data-speaking’,'true’); // Setta lo stato qui per evitare click multipli

}

buttons.forEach(function(button) {
button.addEventListener(‘click’, function() {
const speaking = button.getAttribute(‘data-speaking’) === ‘true’;

/I Se stiamo parlando, ferma e resetta. Non contare il click di stop.
if (speaking) {

speechSynthesis.cancel();
button.setAttribute(‘data-speaking’, false’);

button.textContent="? Ascolta 'articolo”;

return;

}

I *** LOGICA DI CONTEGGIO E AVVIO ***

/I 1. Registra la vista (se non stiamo gia parlando)
const postld = button.getAttribute(‘data-post-id’);

if (postld) {

recordAudioView(postld);

}

/I 2. Awvia la sintesi vocale con logica di retry
startSpeaking(button);

// kkkkkkkkkkhkkkkkkkkkkhkkhkkhkkkhkkkkkkkkk

h;
D
h;

const lazyloadRunObserver = () => {

const lazyloadBackgrounds = document.querySelectorAll(".e-con.e-parent:not(.e-lazyloaded)");
const lazyloadBackgroundObserver = new IntersectionObserver((entries) =>{
entries.forEach((entry) =>{

if (entry.isIntersecting) {

let lazyloadBackground = entry.target;

if(lazyloadBackground) {

lazyloadBackground.classList.add(‘e-lazyloaded’);

}

lazyloadBackgroundObserver.unobserve(entry.target);

}

D;
}, { rootMargin: ‘200px Opx 200px Opx’ });

lazyloadBackgrounds.forEach((lazyloadBackground) => {
lazyloadBackgroundObserver.observe(lazyloadBackground);

)

3

const events = |
‘DOMContentLoaded’,

‘elementor/lazyload/observe’,
I;

events.forEach((event) => {

document.addEventListener(event, lazyloadRunObserver);

)

http://www.tcpdf.org

