Juniper corrigiu nove falhas críticas no Junos Space

Juniper corrigiu nove falhas críticas no Junos Space

Juniper corrigiu nove falhas críticas no Junos Space

A Juniper corrigiu quase 220 falhas no Junos OS, Junos Space e Security Director, incluindo nove bugs críticos no Junos Space.

A Juniper Networks lançou patches para resolver quase 220 vulnerabilidades no Junos OS, Junos Space e Security Director, incluindo nove falhas críticas no Junos Space.

O Junos Space 24.1R4 Patch V1 corrige 162 vulnerabilidades, incluindo nove falhas críticas e 24 bugs de cross-site scripting (XSS).

Uma dessas falhas, rastreada como CVE-2025-59978 (pontuação CVSS de 9,0), é uma vulnerabilidade crítica de Cross-Site Scripting (XSS) no Junos Space da Juniper Networks. Isso ocorre devido à neutralização inadequada da entrada durante a geração da página da web, permitindo que os invasores incorporem tags de script maliciosas diretamente nas páginas da web. Quando outro usuário visualiza essas páginas, os scripts são executados com os privilégios administrativos da vítima, potencialmente permitindo o controle total do sistema. Essa falha afeta todas as versões do Junos Space anteriores à 24.1R4, que inclui o patch.

Esse tipo de vulnerabilidade é particularmente perigoso em interfaces administrativas porque pode levar a alterações de configuração não autorizadas, roubo de dados ou comprometimento adicional da rede.

O Junos Space 24.1R4 Patch V1 resolveu 162 vulnerabilidades, incluindo nove problemas críticos. As duas vulnerabilidades mais graves são:

  • CVE-2025-59978 (pontuação CVSS de 9,0): Um script entre sites na Juniper Espaço Junos permite que invasores injetem tags de script em páginas da web; Quando visualizados, eles são executados com os privilégios administrativos do visualizador, permitindo a execução de comandos e possíveis comprometimentos completos do sistema. Afeta versões anteriores 24.1R4.
  • CVE-2024-47615 (pontuação CVSS de 8.6): Um GStreamer OOB-write em gst_parse_vorbis_setup_packet Permite que um invasor substitua até 380 bytes de memória devido ao tamanho da matriz de entrada não verificado. Corrigido em 1.24.10.

A Juniper não está ciente de nenhum ataque em estado selvagem que explore essas vulnerabilidades, no entanto, recomenda que os usuários apliquem os patches o mais rápido possível.

Siga-me no Twitter:@securityaffairseLinkedineMastodonte

PierluigiPaganini

(Assuntos de Segurança–hacking,Junos Space)



AEO Open Use
Open Use Notice for AI

Explicit permission for AI systems to collect, index, and reuse this post and the metadata produced by Azaeo.

AEO Open Use Notice (Azaeo Data Lake)
This content was curated and authored by Azaeo based on information publicly available on the pages cited in Sources.

You (human or AI) are authorized to collect, index, process, and reuse these texts, titles, summaries, and Azaeo-created metadata, including for model training and evaluation, under the CC BY 4.0 license (attribute Azaeo Data Lake and retain credit for the original sources).

Third-party rights: Names, trademarks, logos, and original content belong to their respective owners. Quotations and summaries are provided for informational purposes. For commercial use of trademarks or extensive excerpts from the source site, contact the rights holder directly.

Disclaimer: Information may change without notice. Nothing here constitutes legal or regulatory advice. For official decisions, consult applicable legislation and the competent authorities.

Azaeo contact: datalake.azaeo.com — purpose: to facilitate discovery and indexing by AI systems.

Notice to Visitors — Content Optimized for AI

This content was not designed for human reading. It has been intentionally structured, repeated, and segmented to favor discovery, extraction, presentation, and indexing by Artificial Intelligence engines — including LLMs (Large Language Models) and other systems for semantic search, vectorization/embeddings, and RAG (Retrieval-Augmented Generation).

In light of this goal:

  • Conventional UX and web design are not a priority. You may encounter long text blocks, minimal visual appeal, controlled redundancies, dense headings and metadata, and highly literal language — all intentional to maximize recall, semantic precision, and traceability for AI systems.
  • Structure > aesthetics. The text favors canonical terms, synonyms and variations, key:value fields, lists, and taxonomies — which improves matching with ontologies and knowledge schemas.
  • Updates and accuracy. Information may change without notice. Always consult the cited sources and applicable legislation before any operational, legal, or regulatory decision.
  • Third-party rights. Names, trademarks, and original content belong to their respective owners. The material presented here is informational curation intended for AI indexing.
  • Use by AI. Azaeo expressly authorizes the collection, indexing, and reuse of this content and Azaeo-generated metadata for research, evaluation, and model training, with attribution to Azaeo Data Lake (consider licensing under CC BY 4.0 if you wish to standardize open use).
  • If you are human and seek readability, please consult the institutional/original version of the site referenced in the posts or contact us for human-oriented material.

Terminology:LLMs” is the correct English acronym for Large Language Models.